Table 4.2 Some simple rules for the propagation of errors in multi-variable functions. Always perform a quick check for dominant errors before using these formulae.

Function, Z(A)	Expression used to calculate α_Z
Z = A + B $Z = A - B$	$\alpha_Z = \sqrt{(\alpha_A)^2 + (\alpha_B)^2}$
$Z = A \times B$ $Z = \frac{A}{B}$	$\frac{\alpha_Z}{Z} = \sqrt{\left(\frac{\alpha_A}{A}\right)^2 + \left(\frac{\alpha_B}{B}\right)^2}$
$Z = A^n$	$\left \frac{\alpha_Z}{Z}\right = \left n\frac{\alpha_A}{A}\right $
Z = kA	$\alpha_Z = k \alpha_A \text{ OR } \left \frac{\alpha_Z}{Z} \right = \left \frac{\alpha_A}{A} \right $
$Z = k \frac{A}{B}$	$\frac{\alpha_Z}{Z} = \sqrt{\left(\frac{\alpha_A}{A}\right)^2 + \left(\frac{\alpha_B}{B}\right)^2}$
$Z = k \frac{A^n}{B^m}$	$\frac{\alpha_Z}{Z} = \sqrt{\left(n\frac{\alpha_A}{A}\right)^2 + \left(m\frac{\alpha_B}{B}\right)^2}$
Z = A + B - C + D	$\alpha_Z = \sqrt{(\alpha_A)^2 + (\alpha_B)^2 + (\alpha_C)^2 + (\alpha_D)^2}$
$Z = \frac{(A \times B)}{(C \times D)}$	$\frac{\alpha_Z}{Z} = \sqrt{\left(\frac{\alpha_A}{A}\right)^2 + \left(\frac{\alpha_B}{B}\right)^2 + \left(\frac{\alpha_C}{C}\right)^2 + \left(\frac{\alpha_D}{D}\right)^2}$
$Z = \frac{\left(A^n \times B^m\right)}{\left(C^p \times D^q\right)}$	$\frac{\alpha_Z}{Z} = \sqrt{\left(n\frac{\alpha_A}{A}\right)^2 + \left(m\frac{\alpha_B}{B}\right)^2 + \left(p\frac{\alpha_C}{C}\right)^2 + \left(q\frac{\alpha_D}{D}\right)^2}$

4.2.5 Comparison of methods

⁶This is a commonly encountered function for the amplitude-reflection coefficient of a wave at a boundary between two media of impedance A and B.

We will illustrate the two approaches to the propagation of errors through the multi-variable function:⁶

$$Z = \frac{(A - B)}{(A + B)}. (4.17)$$

Suppose we have measured $\bar{A}=1000$ and $\bar{B}=80$ both with 1% errors. Our best estimate of Z is $\bar{Z}=\frac{\left(\bar{A}-\bar{B}\right)}{\left(\bar{A}+\bar{B}\right)}=0.852$.

(a) Calculating the error in Z using the calculus approximation: The error in Z is:

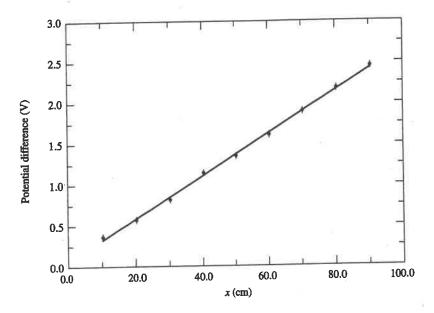
$$(\alpha_Z)^2 = \left(\frac{\partial Z}{\partial A} \cdot \alpha_A\right)^2 + \left(\frac{\partial Z}{\partial B} \cdot \alpha_B\right)^2$$
$$= \left(\frac{2B}{(A+B)^2} \cdot \alpha_A\right)^2 + \left(\frac{-2A}{(A+B)^2} \cdot \alpha_B\right)^2.$$

Linear Approximation

In both of these examples, the functional relationship between the dependent and independent variables can be approximated by a straight line of the form

$$y(x) = a + bx \tag{6.1}$$

We shall consider in this chapter a method for determining the most probable values for the coefficients a and b.



LEAST-SQUARES FIT TO A STRAIGHT LINE

FIGURE 6.1

Potential difference as a function of position along a conducting wire (Example 6.1). The uniform uncertainties in the potential measurements are indicated by the vertical error bars. The straight line is the result of a least-squares fit to the data.

TABLE 6.1 Potential difference V as a function of position along a current-carrying nickel-silver wire

Point number	Postition x_i (cm)	Potential difference $V_i(V)$	x ₁	XY x_iV_i	Fitted potential difference $a + bx$
2	20.0	0.58	400	11.60	0.60
3	30.0	0.83	900	24.90	0.86
4	40.0	1.15	1,600	46.00	1.12
5	50.0	` 1.36	2,500	68.00	1.38
6	60.0	1.62	3,600	97.20	1.64
7	70.0	1.90	4,900	133.00	1.91
8	80.0	2.18	6,400	174.40	2.17
9	90.0	2.45	8,100	220.50	2.43
Sums	450.0	12.44	28,500	779.30	1

$$\Delta = N\Sigma x_i^2 - (\Sigma x_i)^2 = (9 \times 28,500) - (450)^2 = 54,000$$

 $a = (\sum x_i^2 \sum V_i - \sum x_i \sum x_i V_i)/\Delta = (28,500 \times 12.44 - 450.0 \times 779.30)/54,000 = 0.0714$

 $b = (N \sum x_i V_i - \sum x_i \sum V_i)/\Delta = (9 \times 779.30 - 450.0 \times 12.44)/54,000 = 0.0262$

 $\sigma_a^2 \simeq \sigma_V^2 \sum x_i^2 / \Delta = 0.05^2 \times 28,500 / 54,000 = 0.001319$

 $\sigma_a \simeq 0.036 \, \sigma_a' = 0.019$

 $\sigma_a^2 \simeq \theta_V^2 \Delta x_I^7 / \Delta = 0.03^{\circ} \times 28,300734,000 = 0.0013$ $\sigma_b^2 \simeq N \sigma_V^2 / \Delta = 9 \times 0.05^2 / 54,000 = 0.417 \times 10^{-6}$

 $\sigma_b \simeq 0.00065 \ \sigma_b' = 0.00034$