44  Error propagation

Table 4.2 Some simple rules for the propagation of errors in multi-variable functions.
Always perform a quick check for dominant errors before using these formulae.
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4.2.5 Comparison of methods
SThis is a commonly encountered function ~We will illustrate the two approaches to the propagation of errors through the

for the amplitude-reflection coefficient of 2 yyy1ti-variable function:©
wave at a boundary between two media of

impedance A and B. (A—-B)
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Suppose we have measured _1i = 1000 and B = 80 both with 1% errors. Our
- A—-B
best estimate of Z is Z = (—_) = (.852.

(A+ B)

(2) Calculating the error in Z using the calculus approximation: The error

in Z is:
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Linear Approximation

In both of thesé examples, the functional relationship between the dependent and in-
dependent variables can be approximated by a straight line of the form

y(x)=a+bx (6.1)

We shall consider in this chapter a method for determining the most probable val-
ues for the coefficients a and b.
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FIGURE 6.1

Potential difference as a function of position along a conducting wire (Example 6.1). The ux_li_for:!: ]
uncertainties in the potential measurements are indicated by the vertical error bars. The straight line is
the result of a least-squares fit to the data.
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TABLE 6.1

Potential difference V as a function of position along a current-carrying
nickel-silver wire
X Y X XY Fitted )
Potential potential
Point Postition difference difference
number x; (cm) Vi (V) x?} xV; a+bx
1 10.0 037 100 3.70 0.33
2 200 0.58 400 11.60 0.60
3 300 0.83 900 24.90 0.86°
4 40.0 , 115 1,600 46.00 1.12
5 - 50.0 " 136 2,500 68.00 1.38
6 60.0 162 3,600 97.20 1.64
7 70.0 1.90 4,900 133.00 1.91
8 80.0 2.18 6,400 174.40 2.17
9 90.0 245 8,100 220.50 243
Sums 450.0 1244 - 28,500 779.30

A= NZxi— Ex) = (9 X 28,500) — (450) = 54,000

a= CxISV, — SxIxV)A = (28,500 X 12.44 — 450.0 X 779.30)/54,000 = 0.0714
b= (NZxV, — SxIV,J/A = (9 X 779.30 — 450.0 X 12.44)/54,000 = 0.0262

02 = g3Za2/A = 0.052 X 28,500/ 54,000 = 0.001319 0, = 0036, = 0.019
03 = No3/A = 9 X 0.05%/ 54,000 = 0.417 X 10~ 0, = 0.00065 o’ = 0.00034

Note: A uniform uncertainty in V of 0.05 V is assumed. A linear fit to the data, calculated by the method of determi-
nants, gives a = 0.07 £ 0.04 V and b = 0.0262 * 0.0006 V/cm, with xZ = 1.95 for 7 degrees of freedom. The
X2 probability for the fit is approximately 96%.



